Another removing Lambda “trick”

And by trick, I mean I was too slow to realize that:

  someDictionary.Add("Hi", (Boolean doThis) => SomeMethod(doThis));

Can be done this way:

  someDictionary.Add("Hi", SomeMethod);

Where the dictionary is:

  Dictionary<String, Action<Bool>> someDictionary;
  someDictionary = new Dictionary<String, Action<Bool>>();

And SomeMethod is:

void SomeMethod(Boolean doSomething)
{
  //Something is to be done!
}

Which as far as I know, removes a step from the whole process. What does that mean? Well if you break the first one down into an anonymous method, it would look like this:

  someDictionary.Add("Hi", delegate(Boolean doThis){ SomeMethod(doThis); });

I am assuming this would create a reference to a completely new method as opposed to the second example which just uses the already existing method’s reference. Fun yah?

I’m starting to worry about myself

So the “dynamic” linq query so far isn’t just enough to stop. Oh no, now that I can have methods pass back expressions, what about a dictionary of order by expressions to allow an even more dynamic feel? Huh? How’s about that kids? I hate myself too.

//Enum created for the dictionary key
public enum OrderByChoice
{
  FirstName,
  LastName,
  UserName
}

//dictionary of expressions
private static Dictionary<OrderByChoice, Expression<Func<User, String>>>  GetOrderByList()
{
  if(orderByList == null)
  {
    orderByList = new Dictionary<OrderByChoice,Expression<Func<User, String>>>();

    orderByList.Add(OrderByChoice.FirstName, currentUser => currentUser.FirstName);
    orderByList.Add(OrderByChoice.LastName, currentUser => currentUser.LastName);
    orderByList.Add(OrderByChoice.UserName, currentUser => currentUser.UserName);
  }

  return orderByList;
}

That’s right, I know. Silly, but I think it’s cool. Now mind you, I could have methods that return expressions instead of the expressions themselves, but I wanted to show the expressions.

And for the method call:

public static IList<User> GetUserList(OrderByChoice orderBy)
{
  return GetUserList(currentUser => true, GetOrderByList()[orderBy]).ToList();
}

And now you have an even more dynamicish call.

I FORGOT THE USINGS!!!!

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Linq.Expressions;

And some days I love programming

This is the newest edition of Linq madness. So I added an OrderBy to my lame dynamic query thing.

private static IQueryable<User> GetUserList(Expression<Func<User, Boolean>> whereClause, Expression<Func<User, String>> orderBy)
{
    var query = (from user in GetDataContext().Users
             select user).Where(whereClause).OrderBy(orderBy);

    return query;
}

Now you will notice there is a new Expression in town and it’s name isn’t Reggie Hammond. It is my order by Expression which uses a Func<User, String>. It took me a minute to figure out how this works. I thought it was somehow in need of the property name to order by, but in reality it is looking for a list of strings to order by. Simple. I could do something like: (Ignore the WhereLikeFirstNameLastNameUserName for now)

    return GetUserList
           (
            WhereLikeFirstNameLastNameUserName(name),
            currentUser => currentUser.UserName
           ).ToList();

But that’s boring. I want to be able to pass a method that would give the correct string to orderby somewhat cleaner. In comes a method that returns an Expression. OooOoOOo.

private static Expression<Func<User, String>> SortOnUserName()
{
    return currentUser => currentUser.UserName;
}

So now it looks like:

public static IList<User> GetUserListByLikeName(String name)
{
   return GetUserList
          (
           WhereLikeFirstNameLastNameUserName(name),
           SortOnUserName()
          ).ToList();
}

Cleaner… Now what is WhereLikeFirstNameLastNameUserName? Simple, that is my where Expression just being returned in this method:

private static Expression<Func<User, Boolean>> WhereLikeFirstNameLastNameUserName(String name)
{
   return currentUser => SqlMethods.Like(currentUser.UserName, "%" + name + "%")
   || SqlMethods.Like(currentUser.FirstName, "%" + name + "%")
   || SqlMethods.Like(currentUser.LastName, "%" + name + "%");
}

By the way, SqlMethods.Like is just a built in method used only with Linq to Sql. Probably shouldn’t have used it in this example but oh well. Live with it.

OH NO NOT THE USINGS!!

using System;
using System.Collections.Generic;
using System.Data.Linq.SqlClient;
using System.Linq;
using System.Linq.Expressions;

I likz demz linq

So today I had this weird need to try creating a sort of dynamic linq thing in which I could query a User list but not have to write a Linq query for every method. I just wanted to make a method that would return the correct query that I wanted based on a simple “dynamic” where clause. Well part of the reason this should be easy is if you look at the Where extension method on an IEnumerable collection, you will see it needs a Func<T, K> where T is the type of the items in the list. So ding!, create a method that takes in a Func<User, Boolean> and puts it in them thar where clause. Then you could easily use a lambda expression to create the Func. At first you might thing something like this:

private static IQueryable<User> GetUserList(Func<User, Boolean> whereClause)
{
  var query = from user in Users
            where whereClause(user)
            select user;

  return query;
}

public static IList<User> GetUserListByUserName(String userName)
{
  return GetUserList(currentUser => currentUser.UserName == userName).ToList();
}

AND YOU WOULD BE WRONG! I only know this because… eh… I saw a friend of mine try this and it failed. Fact is, the Linq where doesn’t take in a Func, but rather it expects and Expression. So no big deal right? Slap on an expression and go… except you can’t keep the same syntax. (Trust me, my… friend tried) Being the absolute genius that I am, I offered my friend a solution, and it’s slightly ugly:

private static IQueryable<User> GetUserList(Expression<Func<User, Boolean>> whereClause)
{
  var query = (from user in Users
            select user).Where(whereClause);

  return query;
}

Could be used like:

public static IList<User> GetUserList()
{
  return GetUserList(currentUser => true).ToList();
}

Or

public static IList<User> GetUserListByFirstName(String firstName)
{
  return GetUserList(currentUser => currentUser.FirstName == firstName).ToList();
}

Yeah, not the prettiest of things, but it is what it is. I’m not even sure this is useful yet. Still screwing around with it. Does cut down on code for easy queries.

AND NOW FOR THE ASSEMBLIES!

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;

I ain’t gettin’ paid enough for this…

Remember when I said I’m not exactly great with programming terms? Well if I didn’t, I am saying it now. So I saw the word “closures” today and had no idea what this was. All excited about something new, I found out that closures is just another word for anonymous methods, although it may include stuff outside that scope but I’m not sure. Anyhow, although this seemed to be yet another attack of the stupid I stumbled across something here. Basically what caught me is how value types are handled with Funcs. Take this method:

using System;
using System.Collections.Generic;
using System.Linq;

public static Func<Int32> ReturnIntegerWithinFuncReturningMethod(WhichMethod methodToReturn)
{
  Int32 integerToIncrement;
  Func<Int32> returnMethod;

  integerToIncrement = 0;
  returnMethod = null;

  switch(methodToReturn)
  {
  case WhichMethod.AddOne:
   returnMethod = new Func<Int32>(() => { return integerToIncrement += 1;} );
   break;
  case WhichMethod.AddTwo:
   returnMethod = new Func<Int32>(() => { return integerToIncrement += 2; });
   break;
}

 return returnMethod;
}

Let’s say we test it like this:

Func<Int32> returnedMethod;
Int32 integerToCheck;

returnedMethod = ReturnIntegerWithinFuncReturningMethod(WhichMethod.AddOne);
integerToCheck = returnedMethod();
Assert.IsTrue(integerToCheck == 1, "Actual value is:" + integerToCheck.ToString());

integerToCheck = returnedMethod();
Assert.IsTrue(integerToCheck == 2, "Actual value is:" + integerToCheck.ToString());

These both pass. How does that make sense? You would think that it would return 1 both times since from first glance integerToIncrement lives outside the actual Func that is returned. You would think from this that Int32 is a reference type. When a value type is “attached” to a Func like this one is, apparently it keeps a reference to it and therefore the original Int32 is updated every time the Func is called. Something to remember.